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We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical
micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned
at 5mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-
optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the
cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits
either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be
Ω = 2𝜋 × 23.9MHz. The average duration of atom-cavity coupling of about 110 µs is obtained according to the
probability distribution of the atom transits.

PACS: 42.50.Pq, 37.10.Gh DOI: 10.1088/0256-307X/28/4/044203

Sensitive detection of single atoms has always been
a difficult task during the development of atomic
physics.[1] Fortunately, cavity quantum electrodynam-
ics (CQED)[2,3] in strong coupling regimes provide a
powerful tool to detect single atoms sensitively. In
the early period, Kimble et al.[4,5] observed the atoms
from a thermal atom beam by means of a high-finesse
optical cavity. In the experiment the average atom
number 𝑁 < 110 was detected, however a determin-
istic single atom could not be observed due to the
large velocities of thermal atoms. The durations of
thermal atoms in the cavity are only several microsec-
onds. This situation has changed until the naissance
of the cold atom technology. In 1996, Mabuchi et
al.[6] investigated the real-time detection of individ-
ual atoms falling through a high-finesse optical Fabry–
Perot cavity. Later, Hood et al.[7] observed the single
atoms passing through a cavity with various detun-
ings and the “vacuum-Rabi” splitting was obtained.
Other schemes such as optical fountain were also used
to launch cold atoms into micro-cavities to reach the
strong coupling between atoms and photons.[8] Al-
though in free space the substantial extinction of a
light beam by a single atom was observed, which could
be used to sense the single atom,[9] the strongly cou-
pled cavity QED can greatly enhance the ability of sin-
gle atom sensing, not only for the sensitivity of a sin-
gle atom[7] but also for the spatial resolution.[10] With
the help of spatial symmetry breaking of the tilted
high-order transverse cavity mode, the measurement

of spatial resolution of single atoms can be essentially
improved.[11] The detection of individual atoms can
be used to investigate the statistical properties of the
thermal atoms or an atom laser.[12]

As an important and subtle system, cavity quan-
tum electrodynamics in the strong coupling regime
has greatly promoted the development of quantum op-
tics and quantum information science[13] during the
past two decades. Besides the single atom detec-
tion, it has been used in diverse areas such as the
generation of deterministic and controllable single-
photon sources.[14−16] Strongly coupled CQED has
comprehensively improved the performance of single
atom detection and quantum state control. By us-
ing the vacuum-stimulated Raman adiabatic passage
(v-STIRAP), quantum states can be generated, such
as the well-defined single photon state[16] and quan-
tum entangled state between atoms and photons.[17]

The strong coupling is also necessary to achieve the
reversible mapping of quantum states between atoms
and photons, which provides the basis for quantum
optical interconnects and is a fundamental primitive
for networks.[18]

A common and effective method to achieve strong
coupling is to reduce the effective mode volume of cav-
ity. The optimal coupling coefficient 𝑔0 between atoms
and photons is 𝑔0 = 𝑑

√︀
~𝜔/2𝜀0𝑉𝑚, where 𝑑 is the

atomic matrix element, 𝜔 the transition frequency, 𝑉𝑚

the cavity mode volume. For a real system[19] there
are two decays, i.e. the atomic dipole decay rate 𝛾
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and the cavity decay rate 𝜅. When the coupling coef-
ficient 𝑔0 is larger than the decay rates 𝛾 and 𝜅, the
strong coupling between atoms and cavity is achieved.
The detuning between cavity and atom is described by
∆ca = 𝜔cavity−𝜔atom and the detuning between probe
and atom is ∆pa = 𝜔probe − 𝜔atom. The cavity trans-
mission in the weak-field limit of small excitation is

𝑇 (𝑥, 𝑦) =𝜅2(𝛾2 + ∆2
pa) ×

{︀[︀
𝑔eff(𝑥, 𝑦)2 − ∆2

pa

+ ∆ca∆pa + 𝛾𝜅
]︀2

+ (𝜅∆pa + 𝛾∆pa − 𝛾∆ca)2
}︀−1

, (1)

where the effective coupling coefficient is 𝑔eff(𝑥, 𝑦) =
𝑔0Ψ𝑚,𝑛(𝑥, 𝑦, 𝑧)/Ψ0,0(0, 0). The mode functions read

Ψ𝑚,𝑛(𝑥, 𝑦) =𝐶𝑚,𝑛 exp
(︁
− 𝑥2 + 𝑦2

𝑤2
0

)︁
×𝐻𝑚

(︁√2𝑥

𝑤0

)︁
𝐻𝑛

(︁√2𝑦

𝑤0

)︁
, (2)

where 𝐶𝑚,𝑛 = (2𝑚2𝑛𝑚!𝑛!)−1/2(𝑤2
0𝜋/2)−1/2 and 𝐻𝑚,𝑛

are the corresponding Hermite polynomials of order
𝑚 and 𝑛; 𝑤0 is the waist of the cavity mode; 𝜆 is the
wavelength.
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Fig. 1. (Color online) Schematic of the experimental
setup. The length of the cavity is 86 µm. The finesse
of cavity is 𝐹 = 330000 and the parameters of the system
are (𝑔0, 𝜅, 𝛾) = 2𝜋 × (23.9, 2.6, 2.6)MHz. The MOT with
about 105 atoms is positioned at 5mm above the cavity.
The atoms fall down and through the cavity mode after
shutting off the MOT and the transmissions of the cavity
are detected by the SPCMs.

In this study, we demonstrate the ultra-sensitive
detection of individual cesium atoms passing through
a high-finesse optical micro-cavity. The distinct re-
sult is that both the position and the velocity of the
individual atoms are determined with high precision
and a theoretical model is used to fit the experimen-
tal data. The micro-cavity is a Fabry–Perot cavity
composed of two spherical mirrors with ultrahigh re-
flectivity and the length of the cavity is 86µm. The
system is shown in Fig. 1. The MOT with about 105

atoms[20−22] is located at 5 mm above the cavity. The
waist of TEM00 mode is 𝑤0 = 23.8 µm. The finesse
of cavity is 𝐹 = 330000 and the parameters of the
system are (𝑔0, 𝜅, 𝛾) = 2𝜋 × (23.9, 2.6, 2.6) MHz.[23]

The optimal coupling coefficient 𝑔0 is much larger
than the cavity decay rate 𝜅 and the atom decay
rate 𝛾, corresponding to the critical atom number

𝑁0 = 2𝜅𝛾/𝑔20 = 0.024 and critical photon number:
𝑚0 = 𝛾2/(2𝑔20) = 0.006, so the CQED system reaches
the strong coupling regime. The intra-cavity mean
photon number is 𝑚 ≈ 1. The cavity transmission is
detected by single photon counting modules (SPCMs,
PerkinElmer).[24,25] The probe light is adjusted to res-
onance with the cesium D2 (62𝑆1/2, 𝐹 = 4 → 62𝑃3/2,
𝐹 ′ = 5) transition (wavelength is 𝜆 = 852.36 nm).
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Fig. 2. The cavity transmissions versus time with atoms
passing through the TEM00 mode of cavity for Δca =
Δpa = 0. The intra-cavity mean photon number is 𝑚 ≈ 1.
The atom is released at t=0 with shutting off the MOT.
The position and the velocity of the atom for each transit
are shown.

The coupling coefficient between the cavity TEM00

mode and atom is dependent on the spatial posi-
tion and can be described by the relation 𝑔(𝑟) =
𝑔0 exp[−(𝑥2 + 𝑦2)/𝑤2

0] cos(2𝜋𝑧/𝜆), where 𝑥, 𝑦 and 𝑧
are the spatial coordinates shown in Fig. 1. It is found
that the coupling coefficient can be changed from 0
(atom is at a node) to maximum (atom is at an antin-
ode), depending on the location of the atom. When
both the detunings are set to be ∆ca = ∆pa = 0,
the empty cavity transmission keeps the maximum be-
cause of the resonance between the cavity and probe
light. As the atom enters into the cavity, depending on
its exact location, the cavity transmission will decrease
since the strong coupling between the cavity and the
atom causes the Rabi splitting and the probe beam
will not be resonant to the cavity anymore. The cavity
transmission will recover later to the maximum as the
atom leaves the cavity. Figure 2 shows the typical four
transits. The red dots and lines are experimental data
and the blue solid curves are theoretical fitting accord-
ing to Eq. (1). The process described above is clearly
seen and the exact time when the atom arrives at the
center of the cavity mode can be determined after it is
released at 𝑡 = 0. The experimental results show that
the depth of each dip is different. From Fig. 2(a)–2(d),
we can find that the coupling coefficients decrease. In
Fig. 2(a) the transmission decreases to zero, which cor-
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responds to 𝑔max(𝑟) ≈ 𝑔0 and implies that the atom
almost flies through an antinode of the TEM00 mode,
i.e, 𝑦 = 0. From the depth of the dip, we can thus
determine the position of the atom in the y direction.
The shallower the dip is, the farther the atom is from
the cavity axis. In Fig. 2(d), y is about 34.8µm, which
is even larger than the radius of the mode waist. This
means that even if the atom is far away from the cav-
ity mode, it can still be detected sensitively. Actually,
according to the theory, based on our system, even if
the atom has 39 µm off-axis, 50% of the dip could still
be observed. By measuring the transit time precisely,
the velocity of the atom flying through the cavity can
also be determined, as shown in Fig. 2.
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Fig. 3. The time-varying cavity transmissions with repe-
titious drops. There are 0, 1, 2, 4 and 8 atoms [(a)–(e)]
flying through the cavity mode, respectively.
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Fig. 4. Histogram of atom durations inside the cavity.
The duration is obtained by the full width half maximum
of the dips. The average atom duration is about 110µs.

We have measured the time-varying cavity trans-
mission spectra with repetitious atom droppings, as
shown in Fig. 3. Without atoms, the empty cavity
transmission is shown in Fig. 3(a). From Figs. 3(b)–
3(e), one can see 1, 2, 4 and 8 atoms flying through

the cavity mode, respectively. Single atoms can thus
be counted one by one and the micro-cavity here acts
just as a point-like single atom detector. From Fig. 3
we can see that the arrival times and the dip depths
of the atom transits are stochastic. We can change
the average atom number passing through the cavity
mode every drop by adjusting the initial atom num-
ber of the atoms in the MOT and the falling status.
There is an average of three atoms for every drop in
our experiment. We have finished 220 drops and ob-
tained a total of 664 atom transits. The histogram of
atom transits is displayed in Fig. 4, which shows that
the average single atom duration inside the cavity is
about 110µs.
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Fig. 5. The cavity transmission spectra with differ-
ent probes and cavity detunings when the atom passes
through the cavity mode. (a) Δca/2𝜋 = 0 and
Δpa/2𝜋 = −23.9MHz = −𝑔0, (b) Δca/2𝜋 = −40MHz
and Δpa/2𝜋 = −51MHz.
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Fig. 6. The close look of the cavity transmission with the
detunings Δca/2𝜋 = 0 and Δpa/2𝜋 = −23.9MHz = −𝑔0.
The red dots and line are the experimental results while
the blue curve is the theoretical fitting according to the
experimental parameters.

A single atom can also be detected in the case
of non-resonance. We present the cavity transmis-
sion spectra with different detunings in Fig. 5. With
∆ca/2𝜋 = 0 and ∆pa/2𝜋 = −23.9 MHz = −𝑔0, the
cavity transmission keeps at low level when there is
no atom in the cavity. As the atom flies through the
cavity, we obtain a transmission peak, as shown in
Fig. 5(a). Similar observation of the cavity transmis-
sion with the detuning of ∆ca/2𝜋 = −40 MHz and
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∆pa/2𝜋 = −51 MHz is shown in Fig. 5(b).
According to the experimental parameters, the

maximum coupling coefficient is 𝑔0 = 2𝜋 × 23.9 MHz.
Figure 6 is the close-up view of the cavity transmis-
sion for the detunings of ∆ca/2𝜋 = 0 and ∆pa/2𝜋 =
−23.9 MHz. The peak in the center is the left peak
due to the vacuum Rabi splitting, which can be seen
clearly. The blue curve is the theoretical fitting ac-
cording to our experimental parameters and the weak-
field approximation. The experimental result agrees
well with the theoretical simulation. Vacuum Rabi
frequency Ω = 2𝑔0 = 2𝜋× 47.8 MHz is thus confirmed
directly.

In summary, we have experimentally investigated
the sensitive measurement of individual neutral ce-
sium atoms based on a strong coupling CQED system.
The high-finesse optical micro-cavity can sense the sin-
gle atom even if the atom is far away from the center of
the cavity mode. The position and the velocity of the
atom are both determined by the transmission spectra
of the cavity. The average duration of the single atom
in the cavity is about 110µs. By setting the proper
cavity and probe detunings, the transmission peak
due to the vacuum Rabi splitting is observed directly,
which confirms the strong coupling interaction and the
vacuum Rabi frequency Ω = 2𝑔0 = 2𝜋 × 47.8 MHz.
Such a strong coupling CQED system can be used for
demonstrating the quantum manipulation and quan-
tum measurement on the single quanta level.
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